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ABSTRACT 
Ontologies are a central component of the Semantic Web (SW) 
infrastructure. The design and construction of domain ontologies and 
taxonomies is a human intensive process which requires allocation of huge 
resources in terms of cost and time. For the SW to scale and become 
feasible, approaches that reduce human effort and resource commitments 
need to be investigated urgently. Towards this end, we present a 
framework for automated taxonomy construction based on a large corpus 
of documents, a first step towards large scale, automated ontology 
construction. Our approach involves: (a) extraction of an appropriate 
sample from a data set; (b) clustering the documents resulting in a 
hierarchy; (c) taxonomy extraction from this hierarchy; and (d) assignment 
of labels to the extracted nodes in the taxonomy. The above framework 
draws upon a suite of statistical clustering (SC) and natural language 
processing (NLP) techniques. The variations in each part of the approach 
are explored in detail and form the basis of an experimentation framework. 
Metrics are proposed to evaluate the taxonomy generated in comparison to 
a gold standard, to estimate the impact of these variations. In particular, we 
perform our experiments in the domain of medical informatics by using 
the MEDLINE database as the document collection, and the MeSH 
taxonomy as the gold standard. Insights, learned from these initial 
experiments are presented and discussed. 

Categories and Subject Descriptors 
H.3.1 [Content Analysis and Indexing]: Thesauruses, H.3.3 
[Information Search and Retrieval]: Clustering, I.5.3 
[Clustering]: Algorithms, Similarity Measures, I.2.6 [Learning]: 
Concept Learning, Knowledge Acquisition, I.2.7 [Natural 
Language Parsing]: Text Analysis  
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1. INTRODUCTION 
The Semantic Web (SW) [1] has been proposed as an extension to 
the current Web where the content will be machine-
understandable. This content is likely to be in the form of 
documents annotated with metadata descriptions, or data stored in 
back-end relational databases mapped to structured ontologies (or 
schemata) describing content in a domain specific manner. 
Software programs or agents will then be able to gather and 
analyze information over the web, enabling the development of 
software to assist humans and streamline business processes both 

within and across organizational boundaries.  
However, machines today understand very little of available web 
content. In fact, most of the annotations are in the form of tags 
that describe structure, formatting or presentation information. 
Approaches for annotation have primarily been manual [2][3], 
though there have been some attempts at exploring semi-
automatic approaches for metadata annotation [4][48]. As 
observed in these efforts, two resources necessary for realizing 
the semantic web are: (a) large scale availability of domain 
specific ontologies; and (b) large scale availability of annotations 
or metadata descriptions created by using terms, concepts or 
relationships provided by these ontologies. In this paper, we focus 
on the former, i.e., addressing the need for domain specific 
ontologies. 
Ontologies are a central component of the SW infrastructure. 
However, it is well acknowledged that design and construction of 
ontologies is a labor-intensive process and requires allocation of 
huge resources in terms of cost and time. For the SW vision to be 
realized and scale up, it is critical to investigate approaches that 
reduce human effort and resource commitments. Whereas, the 
broad goal of the endeavor should be semi-automatic creation of 
domain ontologies, we begin with an attempt to create an initial 
thesaurus/taxonomy of concepts using a largely unsupervised 
learning approach. This taxonomy forms the vital first step in 
bootstrapping ontologies from textual documents that form an 
overwhelming proportion of content available on the Web today. 
This paper is organized as follows. In Section 2, we review 
relevant work, focusing on the attempts made by other researchers 
to address (parts of) this problem. The experimentation 
framework for taxonomy generation is described in detail in 
Section 3. The various components of the framework are 
discussed in detail in Sections 4-10. Section 11 discusses the 
conclusions and future work. 

2. RELATED WORK 
Approaches for semi-automatic generation of ontologies or 
taxonomies from underlying content may be characterized as: 

Supervised machine learning based approaches, which 
require a large number of training examples, traditionally 
generated manually.  

• 

• 

• 

NLP approaches applied for generating ontological concepts 
and relationships. These are based on rules that analyze 
patterns based on syntactic categories, which requires 
significant human involvement, making it expensive and 
infeasible for large scale SW applications. 

   SC methods have been used to partition data sets, categorize    
search results and visualize data. However, they have not 
focused on generating labels for clusters and creation of new 
taxonomies. 
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Machine learning approaches are for the most part supervised, 
where a set of manually generated positive and negative training 
examples are used. An approach using the concept forming 
system COBWEB [16] has been used to perform incremental 
conceptual clustering on structured instances of concepts 
extracted from the web [10]. Experimental and theoretical results 
on learning the CLASSIC description logic were presented in 
[32], and were used to construct concept hierarchies. An approach 
to bootstrap a classification taxonomy based on a set of structured 
rules was proposed in [35]. A supervised approach presented in 
[34], supports semi-automatic and incremental bootstrapping of a 
domain-specific information extraction system.  
 
Empirical and corpus-based NLP methods to build domain 
specific lexicons have been proposed in [11] and used in [4]. 
Approaches that learn meanings of unknown words based on 
other word definitions in the surrounding context have been 
presented in [12][13]. Case-based methods, that match unknown 
word contexts against previously seen word contexts are 
described in [14][15]. Approaches presented in [25][26] apply 
shallow parsing, tagging and chunking, along with statistical 
techniques to extract terminologies or enhance existing 
ontologies. Full parse tree construction followed by 
decomposition into elementary dependency trees has been used to 
create medical ontologies from French text corpora in [29]. In 
[30], a thesaurus is built by performing clustering according to a 
similarity measure after having retrieved triples from a parsed 
corpus. 
Linguistic structures such as verbs, appositives and nominal 
modifications have been used to identify hypernymic propositions 
in the biomedical text [17]. Lexico-syntactic patterns have been 
investigated for inferring hyponymy from textual data in [7]. 
Salient words and phrases extracted from the documents are 
organized hierarchically using subsumption type co-occurrences 
in [27]. A description of supervised and unsupervised approaches 
to extract semantic relationships between terms in a text 
document is presented in [24]. A generalized association rule 
algorithm proposed in [31] detects non-taxonomic relationships 
between concepts and also determines the right level of 
abstraction at which to establish the relationship. 
Effectively mining relevant information from a large volume of 
unstructured documents has received considerable attention in 
recent years [18][19][20]. A survey on the use of clustering in 
Information Retrieval is presented in [40]. Document clustering 
has been used for browsing large document collections in [21], 
using a “scatter/gather” methodology. These approaches create 
vector space representations of documents and use Euclidean or 
cosine distance-based similarity metrics like the Euclidean to 
extract clusters from groups of documents. Clustering of Web 
documents to organize search results has been proposed in 
[22][38]. Physicists have used clustering to find the spatial 
grouping of stars into galaxies [39]. An approach that pre-
processes documents by applying background knowledge in order 
to improve the clustering results was proposed in [23]. 
An interesting framework for hybrid approaches, combining the 
above techniques is presented in [36]. The Thematic Mapping 
System [8] developed at Verity, Inc. and the lexon mining 
approach [28] most closely reflects our perspective. A 
complementary approach that uses the structure and content of 
HTML-based pages on the Web to generate ontologies is 
presented in [9]. Hybrid approaches have also been used to 

automate semantic annotation, a closely related task, examples of 
which are the SemTag [4] and OntoMate – Annotizer systems [3], 
and the Semagix content management platform [48]. 
In view of the above interesting work based on component 
technologies, we present a comprehensive framework that 
combines some of these components, and consists of the 
following novel features: 

An experimental framework combining SC, NLP and other 
customized techniques for taxonomy generation. 

• 

• 

• 

• 

• 

Exploitation of the statistics generated during the clustering 
process to extract a more meaningful taxonomy. 
Identification of statistical parameters that characterize the 
notion of “differentiation” in the taxonomic structure. 

Techniques for automatic generation and refinement of 
labels for nodes in the final taxonomy. 

Investigation of the impact of various components of the 
framework on the quality of the taxonomy generated, based 
on metrics designed for this purpose. 

Initial validation of our approach using a real world data set, 
the MEDLINE database and real world taxonomy, the 
MeSH thesaurus. 

The taxonomy generation framework is discussed next. 

3. THE TAXONOMY GENERATION 
FRAMEWORK 
We now identify and discuss the basic components of framework 
for generating taxonomic/thesauri structures from textual 
documents (Figure 1). 

Data Extraction
and Sampling 

 

using NLP techniques 
Pre-process data 

Taxonomy
Evaluation

Document 
Indexing 

Label Generation
and Smoothing 

Document
Clustering

Taxonomy 
Extraction 

                        Figure 1: The Taxonomy Generation Framework 

Data Extraction and Sampling A gold standard taxonomy (the 
Medical Subject Headings (MeSH) [5]) is chosen and text 
documents relevant to the gold taxonomy are sampled from the 
MEDLINE bibliographic database. We chose the sub-tree under 
the concept Cardiovascular Diseases consisting of 339 concepts. 
Citations that were annotated by concepts appearing in this sub-
tree of the gold standard taxonomy and had abstracts associated 
with them and were chosen. The citations were sampled at 
different sizes using different techniques based on the underlying 
distribution of the documents wrt the concepts in the taxonomy, 
for e.g., uniform vs. density biased sampling. 
NLP techniques for Pre-processing NLP techniques such as part 
of speech tagging and chunk parsing are used to extract noun 



phrases from the abstracts. Some variations that can be explored 
are extracting simple (1-2 words long), macro (2-3 words long) or 
mega (3-5 words long) noun phrases. Another variation is to 
choose not to pre-process the documents. 

Document Indexing The abstracts (documents) are mapped to a 
vector space, the dimensions of which could either be words or 
extracted phrases. Word based indexing may be used in 
conjunction with noun phrase extraction.  

K-Means Clustering Clusters of documents are identified by 
using a bisecting K-Means strategy, where euclidean or cosine 
based distance is computed between the document vectors. 
Interesting variations are related to the cluster quality measures 
and the type of distance metric (Euclidean vs. cosine). Another 
variation is the use of term vectors to determine term clusters. 
Document clustering is preferred over term clustering, as in most 
real data sets there are more terms than documents, giving the SC 
algorithm a greater discerning power to differentiate clusters.  

Taxonomy Extraction The hierarchy generated by the above 
process is an artifact of the clustering process and does not 
capture the notion of taxonomy. According to our taxonomy 
extraction hypothesis, nodes at lower levels in the taxonomy 
should capture subject categories that correspond to a narrower 
information space as compared to nodes at higher levels, and 
successive levels in the taxonomy should be sufficiently 
differentiated to be of interest to the user. The notion of 
differentiation is captured by the difference in the “cohesiveness” 
(defined later) between successive layers of the taxonomy. The 
taxonomy designer suggests a list of cohesiveness levels, based on 
which the taxonomy extraction algorithm extracts a subset of 
nodes from the clustering hierarchy and identifies the taxonomic 
structure. The levels of “cohesiveness” are parameters that can be 
tuned to generate a taxonomy according to the user’s perspective. 
Label assignment and smoothing The centroids of the extracted 
clusters are analyzed to assign a set of potential labels to the 
nodes in the taxonomy. Terms corresponding to the K highest 
weighted dimensions in the centroid vector are chosen. Various 
techniques such as propagation of labels to parent nodes, use of 
thesauri such as WordNet or the UMLS Metathesaurus can be 
used refine the labels. Lexico-syntactic patterns [7] can be used to 
identify potential subClassOf relationships. 

Taxonomy Evaluation Finally, the generated taxonomy is 
evaluated wrt the gold standard taxonomy using a variety of 
different measures. These measures capture the content-based 
similarity (i.e., overlap between the labels extracted) and the 
structural similarity (i.e., consistency of parent-child 
relationships) between the two taxonomies. 
We now enumerate the dimensions of our experimental 
framework, based on the variations discussed above. 
1. Sampling:  

a. Uniform sampling 
b. Density biased sampling 

2. Natural Language Processing 
a. No Tagging/Chunking 
b. Noun Phrases: (i) Simple, (ii) Macro, (iii) 

Mega 
c. Verb Phrases 

3. Indexing:  
a. Term-based dimensions: Word-based vs. Phrase 

based 
b. SVD eigenvector-based dimensions: Word-based 

vs. Phrase-based 
4. Clustering 

a. Document based clustering 

b. Term based clustering 
5. Distance Measures 

a. Euclidean 
b. Cosine 

6. Cluster Quality Measures: 
a. Internal Measures:  

(i) Pair wise distance,  
(ii) Distance from Centroid 

b. External Measures 
7. K-Means Number of Iterations 
8. Label assignment:  

a. Threshold: (Value of Top K) 
b. Use of Noun Phrase Matching 
c. Use of Taxonomic Label Propagation 

9. Use of Thesauri: Yes/No 
10. Use of Lexico-Syntactic Patterns: Yes/No 
The impact of the some of the dimensions of the above 
framework on the quality of the taxonomy will be investigated 
later in the paper. The other dimensions will be investigated in 
future work. We now discuss the individual components of the 
Taxonomy Generation Framework in greater detail. 

4. SAMPLING THE DATA SET 
A subset of the MEDLINE bibliographic database satisfying the 
following conditions is extracted: (a) the MEDLINE citation 
should be annotated by one of the 339 concepts present in the 
gold taxonomy, i.e. the MeSH sub-tree under the concept 
Cardiovascular Diseases; (b) the concepts that annotate the 
citation should be identified as “preferred”; and (c) the citation 
should have a non-empty abstract. We investigate two possible 
sampling techniques: uniform random sampling and density 
biased sampling. 
“Uniform random sampling is frequently used in practice and also 
frequently criticized because it will miss small clusters. Many 
natural phenomena are known to follow Zipf’s distribution and 
the inability of uniform sampling to find small clusters is of 
practical concern” [37]. In the context of our approach, sampling 
is likely to be biased in such a way as to produce a taxonomy 
containing concepts which appear only in a large number of 
MEDLINE citations. Hence, we adopt the approach of density 
biased sampling as proposed in [37] where we probabilistically 
under-sample dense regions, i.e., concepts that appear as 
annotations of a large number of MEDLINE citations; and over-
sample light regions, i.e., concepts that appear as annotations of a 
small number of MEDLINE citations. Density biased sampling 
relies on the a priori approximate grouping of data points in the 
sample. It then samples points from these groups whilst ensuring 
that dense regions are under-sampled and sparse regions over-
sampled. The advantage we have in our experiment is that we 
know exactly what these groups are a priori. This enables us to 
greatly simplify the sampling process in our experiments. As 
discussed in [37], the data sets sampled have the following 
characteristics: 

Given a MeSH concept, documents are selected with a 
uniform probability. The probability function is: 

• 

)ptsize(Conce
  )f(Concept

i
i

α
=  

• 

• 

The sample is density preserving and biased by group size. 

For a given sample size M, the value of α is given by: 

∑
=

Μ
 = 339
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)ptsize(Conce i
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5. NATURAL LANGUAGE PROCESSING 
The PhraseX program developed at the National Library of 
Medicine is used to extract Noun Phrases from the documents. 
PhraseX extracts noun phrases from text by referring to the 
syntactic structure provided by the SPECIALIST minimal 
commitment parser. The SPECIALIST minimal commitment 
parser relies on the SPECIALIST Lexicon as well as the Xerox 
stochastic tagger [41]. The output contains simple noun phrases. 
The authors in [42] refer to these phrases as "core noun phrase," 
that is, a noun phrase with no modification to the right of the 
head. 
The SPECIALIST parser is based on the notion of barrier words 
[43] which indicate boundaries between phrases. After lexical 
look-up and resolution of category label ambiguity by the tagger, 
complementizers, conjunctions, modals, prepositions, and verbs 
are marked as boundaries. Subsequently, boundaries are 
considered to open a new phrase (and close the preceding phrase). 
Any phrase containing a noun is considered to be a (simple) noun 
phrase, and in such a phrase, the right-most noun is labeled as the 
head; all other items (other than determiners) are labeled as 
modifiers. An example of the output from the SPECIALIST 
parser is given in (2) for the input in (1). 
(1) Kupffer cells from halothane-exposed guinea 
     pigs carry trifluoroacetylated protein 
     adducts. 

(2)[[mod([lexmatch(['Kupffer']), 
          inputmatch(['Kupffer']),tag(noun)]), 
     head([lexmatch([cells]), 
     inputmatch([cells]),tag(noun)])], 
    [prep([lexmatch([from]), 
           inputmatch([from]),tag(prep)]), 
     mod([lexmatch([halothane]), 
          inputmatch([halothane]),tag(noun)], 
          punc([inputmatch([-])]), 
          mod([lexmatch([exposed]), 
               inputmatch([exposed]),tag(adj)]), 
          head([lexmatch(['guinea pigs']), 
                inputmatch([guinea,pigs]), 
                              tag(noun)])], 

    [verb([lexmatch([carry]),inputmatch([carry]), 
                                     tag(verb)])], 
    [mod([lexmatch([trifluoroacetylated]), 
          inputmatch([trifluoroacetylated]), 
                                 tag(adj)]), 
     mod([lexmatch([protein]), 
          inputmatch([protein]),tag(noun)]), 
     head([lexmatch([adducts]), 
           inputmatch([adducts]),tag(noun)]), 
     punc([inputmatch(['.'])])]] 

The underspecified structure produced by the SPECIALIST 
parser serves as the basis for the extraction of noun phrase strings 
by PhraseX. In addition to the simple noun phrase (labeled as 
"simp" in output), PhraseX identifies two additional structures. 
One of these is the complex noun phrase in which a head is 
followed by contiguous prepositional phrases to its right 
("macro"). The first preposition in this structure can be anything, 
but all the rest must be "of". The second structure is not a 
canonical syntactic phenomenon, but may be important for 
information processing. Such a phrase includes all the content 
words that occur in a sentence either to the left or the right of a 
finite verb ("mega"). Examples of these strings as extracted from 
the syntactic structure in (2) are given in (3). 
(3) 00000000|simp|kupffer cells 
    00000000|simp|halothane exposed guinea pigs 
    00000000|simp|trifluoroacetylated protein 
                                           adducts 

    00000000|macro|kupffer cells from halothane 
                               exposed guinea pigs 
    00000000|mega|kupffer cells from halothane 
                               exposed guinea pigs 
    00000000|mega|trifluoroacetylated protein 
                                           adducts  

6. DOCUMENT INDEXING 
There are two possibilities related to indexing the documents: 

• Terms are used as dimensions of the underlying vector space 
as in the SMART Indexing and Retrieval Engine [44]. 

• The Latent Semantic Indexing approach [47], where a 
Singular Value Decomposition (SVD) analysis identifies the 
underlying eigenvectors. These are used as dimensions of a 
common “latent” space in which both term and document 
vectors can be represented.  

Either technology can be used with either words or phrases as 
features. The documents can be pre-processed to extract noun 
phrases, which can then be indexed by using either of the above 
approaches. Alternatively, the raw text bag of words, after 
removal of stop words, can be indexed. 

7. CLUSTERING THE DATA SET 
The document vectors generated by the document indexing 
engine undergo a clustering process, using a bisecting k-means 
algorithm. A hierarchical cluster tree is generated. Consider a set 
of document vectors D = {d1, …, dM} in the Euclidean space RN. 
Let the centroid of the set be denoted by: 

m( ) =  
1
M

di
i=1

M

D ∑  

The cohesiveness of the set (also known as intra-cluster 
cohesiveness) is defined as: 

c( ) =  
1
M

cos(d ,  m( ))
i = 1

M

iD D∑  

Let {πi }k
i=1 be a partition of D with the corresponding centroids 

m1 = m(π1), …, mk = m(πk) . The quality of the partition increases 
if the intra-cluster cohesiveness increases. Thus the quality Q of 
the partition {πi}k

i=1  is given by: 

Q({ } ) =  
1
k

c( )
i=1

k
i i

i=1

k

π π∑  

We start with the set of all the documents as the initial cluster. Let 
C1, …, Ci be the set of clusters at ith iteration. We choose a cluster 
S using a selection rule and apply k-means clustering with k=2 to 
give (i+1) clusters. Typically a cluster with the lowest intra-
cluster cohesiveness or the one with maximum intra-cluster 
variance is chosen. We check to determine if there is significant 
improvement in the partition quality.  In case there is, we run k-
means on all the (i+1) clusters to stabilize the clusters at this 
level. Changes in the clusters are noted and the above process is 
repeated until a significant increase in the quality measure is not 
seen. The algorithm pseudo-code is presented below. 
1. Start with a single cluster D at level = 1. 
2. At tree level = L, 

a. Select a cluster πj,L from the partition 
{πi,L}ki=1  which has the lowest value for 
c(πj,L) 

b. Run k-means clustering on {πj,L} with k = 2 
to obtain a new partition with k+1 
clusters {πi,L+1}k+1i=1 . This includes the 



clusters {πj,L+1, πk+1,L+1} generated from 
cluster πj,L. 

3. Check if Q({πi,L+1}k+1i=1) is significantly 
greater than Q({π }k ) i,L i=1

4. If there are significant gains, 
a. Copy the centroids to initialize a new 

partition at level L+1, i.e., m = m(π +1) i i,L

b. Establish the following relationships: 
i. child(πj,L) = πj,L+1 

ii. child(πj,L) = πk+1,L+1 
iii. child(πi,L) = πi,L+1 for other clusters. 

c. Run k+1 means clustering on {πi,L+1}k+1i=1 to 
stabilize the clusters at level L+1 

d. Goto step 2. 
5. Stop. 
It should be noted that the hierarchical cluster tree is an artifact of 
the clustering algorithm and is not the taxonomy that will be 
generated. As a part of the clustering process, we compute certain 
parameters that will be useful in extracting the final taxonomy. 
The parameters are: 

The intra-cluster cohesiveness c(πi). This determines the 
differentiation in meaning between successive levels of the 
extracted taxonomy. 

• 

• 

• 

The centroid vector m(πi). This is used to generate potential 
labels corresponding to a cluster. 
The parent child relationships between the clusters generated 
at the various levels. 

8. TAXONOMY EXTRACTION 
According to our taxonomy extraction hypothesis, nodes at lower 
levels in the taxonomy should capture subject categories that 
correspond to a narrower information space as compared to 
nodes at higher levels, and successive levels in the taxonomy 
should be sufficiently differentiated to be of interest to the user. 
The notion of differentiation is captured by the difference in the 
cluster cohesiveness between successive layers of the hierarchical 
cluster tree. The taxonomy creator or user is expected to suggest a 
set of cohesiveness levels which correspond to differentiation 
between the various layers of the taxonomy. In the course of our 
experimentation, it was observed that the successive values of 
cohesiveness down a cluster hierarchy are monotonically 
increasing in value. In general, this will be an iterative process 
involving display of the raw clustering and labeling results to the 
user. This will give him/her a better idea of how to set up the 
cohesiveness levels to produce the desired taxonomy. The levels 
of cohesiveness are thus parameters which can be varied to better 
“tune” a taxonomy that corresponds to the creator’s perspective of 
the information domain. The process of interaction between the 
taxonomy creator and the TaxaMiner system and “tuning” of the 
parameters are beyond the scope of this paper and will be 
addressed in our future work.  
Given a set of cohesiveness parameters, the taxonomy extraction 
algorithm extracts a subset of nodes from the clustering hierarchy 
and identifies the taxonomic structure (Figure 2). The input to 
this algorithm is a cluster hierarchy (H) with the computed 
cohesiveness measure c(πi) and a set of thresholds: µ1 ≥ … ≥ µN 
and the output is an extracted taxonomy (T).  
 
A set of paths belonging to a tree T is denoted by paths(T) = {p1, 
…, pM} and contains the paths originating from the root of the tree 
and ending at the leaf nodes of the tree. The paths corresponding 
to the hierarchical cluster H in Figure 2 are: 
paths(H) = {“DSSS…”, “DHH4 H4 H4...”, “DHKLH3…”, …}. 
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Figure 2: Taxonomy Extraction from Hierarchical Cluster Tree 

Each node in H corresponds to a cluster of documents. A set of 
selected nodes corresponding to a cohesiveness threshold µj is 
denoted by selectedNodes(µj) and identifies clusters πj s.t. c(πj) is 
closest to µj. The selected nodes as illustrated in Figure 2 are: 
 selectedNodes(µ1) = {S, H4, K} 
 selectedNodes(µ2) = { H3, H1, H2} 
We now present an algorithm for taxonomy extraction.  
1. For each path p  in paths(H) do i

a. For j = 1 to N do 
i. Find nodes A and B in pi s.t. c(A) ≤ µj 

≤ c(B) 
ii. If (µj - c(A)) ≤ (c(B)-µj) 

Insert A in selectedNodes(µj) 
Else, Insert B in selectedNodes(µj) 

2. Collapse H: For i = 1 to N do 
a. For each Node A in selectedNodes(µi) do 

i. If i>1,  
  Find ancestor(A) in selectedNodes(µi-1) 

ii. If i=1, ancestor(A) = root(H) 
iii. Delete all nodes from on the path from 

A to ancestor(A) 
iv. Establish ancestor(A) as the parent of 

A in the extracted taxonomy T 
3. End Extract Taxonomy 

9. TAXONOMY LABELING 
Once the relevant taxonomy nodes have been extracted from the 
cluster hierarchy tree, the following steps are performed: 
 For each node in the extracted taxonomy, a set of potential 

labels that are extracted. 
 These sets of labels are then pruned and smoothened using 

both the noun phrases extracted from the dataset and 
taxonomic label propagation. 

9.1 Label Extraction and Assignment 
Label extraction and assignment depends on the underlying 
indexing technique used to create the vector space. The extraction 
of the top K terms that contribute most to the centroid vector can 
be implemented in the following two ways: 
 In the case of SMART [44], terms and documents have their 

own underlying vector spaces. Hence, we simply choose the 
top K values of the centroid vector and determine the terms 
which contribute to the top K terms. 

 In the case of the LSI [47], terms and documents are 
represented in the same “latent” space. This enables us to 
compute the (Euclidean or cosine) distance between the 
centroid vector and the term vectors. 

Given a cluster node πi, we define the labels(πi) to contain the 
labels assigned to the cluster in the taxonomy tree.  
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9.2 Label Smoothing and Propagation 
Having assigned labels to each of the nodes in the extracted 
taxonomy, the first challenge is to determine which of the K 
labels are relevant to the node and which are spurious. Also, the 
same labels can appear in multiple nodes of the taxonomy. Two 
approaches that can be used for label smoothing are: 

1. Use of Noun Phrase information: The noun phrases 
extracted from the documents are stored in a lexicon. 
Individual words are combined into potential phrases in the 
lexicon, thus reducing the number of labels. Let the lexicon 
be denoted by lexicon(T) 

2. Use of Taxonomic Label Propagation: The assignment of 
labels across multiple nodes in the taxonomic structure is 
used to propagate labels across different levels of the 
taxonomy and thereby reduce the number of spurious labels. 

In this paper, we focus only on taxonomic label propagation. 
Some heuristics for label propagation are: 

• 

• 

• 

• 

• 

• 

• 

Propagate to Child: If a label appears both in the parent and 
one or few children, the label will be propagated to the child 
and removed from the parent. A parent node in a taxonomy 
is a generalization of its children. Hence the parent should 
not have a label that only one or few of its children have.  

Propagate to Parent: If a label has been assigned to all the 
children of a node, the label will be propagated to the parent 
and removed from all the children nodes at which it appears. 
If every child of a node in a taxonomy has a label that the 
node itself has, having that label in the parent node suffices 
to convey the fact that children of this node also talk about 
the concept that the label represents.  

The algorithm for label propagation and smoothing is as follows. 
1. Start with the Root(T) 
2. For each cluster node πi at level L do 

a. For cluster node πj ∈ children(πi) do 
i. If ∆ = labels(πi) ∩ labels(πj) ≠ φ  

ii. labels(π ) = labels(πi) - ∆ i

3. End Propagate to Children 
4. Start with cluster nodes in leaves(T) 
5. For each cluster node πi at level L do 

a. If ∆ = labels(πi) ∩ childLabels(πi) ≠ φ 
b. labels(πi) = labels(πi) + ∆ 
c. For πj ∈ children(πi) do 

i. labels(π ) = labels(πj) - ∆ j

6. End Propagate to Parent 
7. End Label Propagation   

10. EXPERIMENTAL EVALUATION 
We now discuss metrics used to evaluate the quality of the 
taxonomy generated by our algorithms. Experiments that 
investigate the impact of the various factors enumerated in the 
taxonomy generation framework (Section 3) on the quality of the 
taxonomy generated are discussed. 

10.1 Taxonomy Quality Metrics 
Metrics have been developed for approximate tree matching using 
edit distance in [45]. Whereas we plan to develop more 

sophisticated and sensitive metrics for taxonomy quality based on 
the ideas in [45], in our current work, we propose simple and 
pragmatic metrics to evaluate the generated taxonomy. 

1. Content Quality: This component measures the overlap in 
the labels present in the generated Taxonomy, Tgen and the 
gold standard taxonomy Tgold. 

2. Structural Quality: This component measures the structural 
validity of the labels, i.e., when two labels appear in a parent 
child relationship in Tgold, they should appear in a consistent 
relationship (parent-child or ancestor-descendant) in Tgen. 

The algorithm to compute the quality metrics is presented below. 
1. contentQ = 0 
2. structQ = 0 
3. For each πi ∈ Tgen do 

a. matchLabels(πi) = φ 
b. For each labelj ∈ labels(πi) do 

i. If labelj ∈ taxonomyLabels(Tgold) and 
labelj ∉ matchLabels(πK), 1 ≤ K ≤ i-1 

    contentQ = contentQ + δ 
    add labelj to matchLabels(πi) 

ii. NumComparisons = NumComparisons + 1 
4. Normalize: contentQ = contentQ/NumComparisons 
5. End Content Quality Computation 
6. Start with Root(Tgen) 
7. For each cluster node πi at level L do 

a. For each πj ∈ children(πi) do 
b. LabelPairSet = matchLabels(πi) × 

                        matchLabels(πj) 
i. For each <pLabel,cLabel>  

                     ∈ LabelPairSet do 
ii. If pLabel = parent(cLabel) or pLabel = 

ancestor(cLabel) in Tgold 
         structQ = structQ + 1 
         Exit ForLoop (Begins at 7(a)) 

iii. NumComparisons = NumComparisons + 1 
8. Normalize: structQ = structQ/NumComparisons 
9. End Structural Quality Computation 

10.2 Experimental Results 
We present an initial set of experiments evaluating the impact of 
the following on the (content and structural) quality of the 
taxonomies generated: 

The effect of varying the size of the data sets. 

The effect of varying the number of labels extracted. 

The effect of pre-processing the document set using limited 
NLP techniques (Noun Phrase Extraction). 

The content and structural quality measures defined in the 
previous section will be used with the following caveats: 

In the current set of experiments, we have generated only 50 
levels of the clustering hierarchy. We plan to generate more 
levels in further experiments which will lead to better results. 

A subject matter expert is required for setting the threshold 
levels for taxonomy extraction, i.e., the µ values discussed in 
Section 8. In our current experiments we have assigned µ 
values automatically based on the minimum and maximum 
values of cohesiveness. We believe that the involvement of 
an expert would significantly improve the quality measures. 

The gold standard taxonomy and a sample learned taxonomy are 
illustrated in the Appendix (Figure 7 and 8) at the end of this 
paper. We begin with a set of experiments involving multiple data 
sets that have been pre-processed using NLP techniques (Figure 



3). Taxonomy content quality measures are computed for each of 
the taxonomies for different values of K (the size of the label sets 
extracted at each cluster node in the taxonomy). 
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Figure 3: Taxonomy Content Quality for different sizes of the 

data sets, and extracted label sets/cluster node 
Some interesting trends observed in Figure 3 above are: 

Increasing the data set size does not necessarily increase the 
content quality of the taxonomy generated. In fact, we notice 
a trend that suggests that the taxonomy quality peaks and 
then tends to deteriorate for larger data sets. 

• 

• 

• 

Extracting a lesser number of labels for each cluster node 
(the value of K) gives better results for the content quality of 
the generated taxonomy. 

A few “crossings” are observed as the value of K increases; 
i.e., higher values of K outperform the algorithm for lower 
values for some data points. 

In the next figure, we repeat the same set of experiments as in the 
case of Figure 3, but evaluate the structural quality of the 
generated taxonomies. 
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Figure 4: Taxonomy Structure Quality for different sizes of 

the data sets and extracted label sets/node 
Some interesting trends observed in Figure 4 above are: 

Compared to the content quality measure, the structural 
quality measure has a lower trend of values. 

• 

• In most cases there seems to be a beneficial impact of the 
increase in the data set size on the, structural quality measure 
though this aspect needs to be investigated further. 

In the next set of experiments, we investigate the impact of pre-
processing the document set using limited NLP techniques, such 
as noun phrase extraction. For a particular value of the number of 
labels extracted/node, K=35, the content (Figure 5) and structural 
(Figure 6) quality of the generated taxonomies are evaluated. 
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Figure 5: Comparison of Taxonomy Content Quality with and 

without NLP-based pre-processing (K=35) 
The content quality graphs observed in the above figure mirror 
each other in both the cases (with and without NLP pre-
processing) and suggest that there is definite value in using 
limited NLP techniques to pre-process a document set. 
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Figure 6: Comparison of Taxonomy Structure Quality with 

and without NLP-based pre-processing (K=35) 
The structural quality graphs observed in the above figure do not 
show a consistent trend or pattern. However, there are quite a few 
graph crossings which indicate that approaches with and without 
NLP out-perform each other at various data points. The interested 
reader may visit the project website, 
http://cgsb2.nlm.nih.gov/~kashyap/projects/TaxaMiner for more 
examples of taxonomies generated using our techniques. 

10.3 Discussions and Insights 
The experiments discussed above are a component of extensive 
ongoing work in evaluating a suite of taxonomy generation 
techniques. They have provided us with some interesting insights, 
which indicate further areas of research and investigation. 
The fact that taxonomy content quality decreases after an 
observed peak, suggests that there might be an optimal data set 
size for good quality taxonomy extraction. Also increasing the 
data set size may not add new information content and probably 

http://cgsb2.nlm.nih.gov/~kashyap/projects/TaxaMiner


introduces noise into the generated taxonomy. An interesting 
research problem would be to come up with decision procedures 
to estimate the optimal size of a data set to generate an optimal 
taxonomy, especially in the absence of a gold standard. 
Increasing the number of labels extracted for each cluster nodes 
(value of K), increases the content quality of the generated 
taxonomy a little bit, but then for larger values of K, the content 
quality deteriorates significantly. For really high values of K, we 
see almost a straight line, which even overwhelms the impact of 
increasing the size of the data set. This is probably due to a large 
number of spurious labels being generated, indicating that there is 
probably an optimum value of the label set that can be generated, 
another area of potential investigation. 
The lower values of structural quality (as opposed to content 
quality) suggest that a deeper investigation is needed to obtain 
better results. We expect meaningful user input in the form of 
judiciously chosen cohesiveness thresholds (µ values) to alleviate 
the problem by identifying the correct level of differentiation and 
alignment. In our current experiments, we have implemented 
heuristics that identify these µ values automatically. These 
heuristics can be further enhanced, in conjunction with reference 
taxonomies of the domain to automatically recommend a range of 
µ values to the user for taxonomy extraction. 
The structural quality seems to improve at higher values of the 
data set size, especially when the value of K is lower. This 
suggests that there might be an optimal combination of the 
number of documents in the data set and the number of labels 
extracted that might give good results. 
For certain applications like information filtering and semantic 
annotation, the content quality measure might have more 
importance as opposed to the structural quality measure. We need 
to investigate a composite measure that gives different weights to 
the content and structural components and configure the 
taxonomy generation algorithm appropriately. 
Pre-processing the documents using NLP techniques gives better 
taxonomy content quality. However, we observe that NLP and 
non-NLP approaches out-perform each other at different points. A 
deeper investigation into this phenomenon would enable us to 
develop hybrid SC and NLP approaches to optimize a 
combination of content and structural taxonomy quality. 

11. CONCLUSIONS AND FUTURE WORK 
The main contribution of this paper is a comprehensive approach 
and framework for the difficult, and yet important problem for 
bootstrapping taxonomies from textual data. In contrast to other 
approaches, that address components of the problem, we present a 
comprehensive process and strategy that minimizes the 
involvement of a domain expert in creating a taxonomy. Some of 
the novel features of our work are: 

• 

• 

• 

• 

• 

• 

• 

• 

A systematic experimental framework that combines and 
evaluates statistical clustering, NLP and other techniques for 
taxonomy generation. Design of taxonomy quality metrics 
and their use to evaluate the impact of the above techniques 
on the quality of the results generated. 

Exploitation of the statistics generated during the clustering 
process to extract a more meaningful taxonomy. 
Identification of statistical parameters that characterize the 
notion of “differentiation” in the taxonomic structure. 

Techniques for automatic generation and refinement of 
labels for creating the final taxonomy. 

Initial validation of our approach using a real world data set, 
the MEDLINE database and real world taxonomy, the 
MeSH thesaurus. 

Initial experimentation points out interesting insights. One insight 
suggests that a generated taxonomy consists of intrinsic 
information content, and analyzing larger data sets and extracting 
more labels will not necessarily guarantee good results. Human 
involvement, though minimized is crucial to the process of 
creating good quality taxonomies. Also, the notion of quality of a 
taxonomy is a combination of content-based and structure-based 
components and needs to be specified in an application and 
domain specific manner. Finally, an optimal strategy for 
taxonomy generation based on a user configured quality metric 
involves a joint optimization of various parameters. 
This work is an ongoing collaboration between researchers at the 
National Library of Medicine, LSDIS Lab at the University of 
Georgia and Applied Research Labs at Telcordia Technologies. 
Some issues that we are investigating are: 

Algorithmic techniques for improving the structural quality 
of the generated taxonomies. 

Understand and leverage the human expert, especially in the 
context of identifying the levels of differentiation in the 
taxonomy that corresponds to his/her perspective of the 
application or domain. Combined quality metrics that better 
reflect the needs of the user. 

Investigation of the notion of an optimal set of parameters 
for generating a taxonomy. For example, processing a bigger 
data set can be avoided if we know that the resulting 
improvement in the taxonomy quality will be negligible. 

Investigation of NLP and other techniques [7] to further 
refine the taxonomies generated into richer ontologies. 

We believe that pragmatic issues as enumerated above are crucial 
for generating ontologies/taxonomies in a scalable and feasible 
manner and that we have taken a very important first step in this 
direction. 
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APPENDIX: TAXONOMIES 

 
                      Figure 7: The Gold Standard Taxonomy (MeSH) 
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                       Figure 8: The Learned Taxonomy, Data Set Size = 9305 docs with the matched labels represented in Capital Letters 
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